AI Syntax Overview

Python for Machine Learning

Python is a popular programming language for AI and machine learning. Below is a simple Python script using scikit-learn for a basic machine learning task.

        
            import numpy as np
            from sklearn.model_selection import train_test_split
            from sklearn.linear_model import LinearRegression

            # Load dataset
            X, y = np.array([[1], [2], [3]]), np.array([2, 4, 6])

            # Split data
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

            # Create a linear regression model
            model = LinearRegression()

            # Train the model
            model.fit(X_train, y_train)

            # Make predictions
            predictions = model.predict(X_test)

            print(predictions)
        
    

Java for AI Applications

Java is another language used in AI applications. Below is a snippet using the Deeplearning4j library for neural networks.

        
            import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
            import org.deeplearning4j.nn.graph.ComputationGraph;
            import org.deeplearning4j.nn.weights.WeightInit;
            import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
            import org.deeplearning4j.nn.conf.NeuralNetConfiguration;

            // Create a simple neural network configuration
            MultiLayerConfiguration config = new NeuralNetConfiguration.Builder()
                .weightInit(WeightInit.XAVIER)
                .list()
                .layer(0, new DenseLayer.Builder().nIn(10).nOut(20).build())
                .layer(1, new OutputLayer.Builder().nIn(20).nOut(1).build())
                .build();

            // Create a MultiLayerNetwork
            MultiLayerNetwork model = new MultiLayerNetwork(config);
            model.init();

            // Train and use the model
            // (Note: This is a simplified example)
        
    

This is a basic overview, and AI involves various concepts and libraries. Feel free to explore specific areas like natural language processing (NLP), computer vision, and deep learning for more in-depth syntax.

0 Comment:

Post a Comment