AI Syntax Overview
Python for Machine Learning
Python is a popular programming language for AI and machine learning. Below is a simple Python script using scikit-learn for a basic machine learning task.
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# Load dataset
X, y = np.array([[1], [2], [3]]), np.array([2, 4, 6])
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create a linear regression model
model = LinearRegression()
# Train the model
model.fit(X_train, y_train)
# Make predictions
predictions = model.predict(X_test)
print(predictions)
Java for AI Applications
Java is another language used in AI applications. Below is a snippet using the Deeplearning4j library for neural networks.
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
// Create a simple neural network configuration
MultiLayerConfiguration config = new NeuralNetConfiguration.Builder()
.weightInit(WeightInit.XAVIER)
.list()
.layer(0, new DenseLayer.Builder().nIn(10).nOut(20).build())
.layer(1, new OutputLayer.Builder().nIn(20).nOut(1).build())
.build();
// Create a MultiLayerNetwork
MultiLayerNetwork model = new MultiLayerNetwork(config);
model.init();
// Train and use the model
// (Note: This is a simplified example)
This is a basic overview, and AI involves various concepts and libraries. Feel free to explore specific areas like natural language processing (NLP), computer vision, and deep learning for more in-depth syntax.
0 Comment:
Post a Comment